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FINITE-DIFFERENCE THEORY FOR SOUND PROPAGATION IN A LINED DUCT 

WITH UNIFORM FLOW USING THE WAVE ENVELOPE CONCEPT 

by Kenneth  J. Baumeister 

Lewis Research Center  

SUMMARY 

The finite-difference equations a r e  derived for sound propagation in a two- 
dimensional, straight, soft-wall duct with a uniform flow by using the wave envelope 
concept. 
solution does not oscillate in the axial direction. 
quired number of finite-difference grid points by one to two orders of magnitude. 
this report, the governing acoustic-difference equations in complex notation a r e  derived. 
Also, a new exit condition is developed that allows a duct of finite length to simulate the 
wave propagation in an infinitely long duct. 
plane wave incident upon the acoustic liner. 
good agreement with closed-form analytical theory. 
locity printouts a r e  given to some sample problems and can be used to debug and check 
future computer programs. 

This concept involves a transformation of the wave equation into a form whose 
This transformation reduces the re- 

In 

Sample calculations a r e  presented for a 
They show the numerical theory to be in 

Also, complete pressure and ve- 

INTRODUCTION 

Finite-difference techniques a r e  now being considered for application in complex 
situations involving sound propagation in ducts with axial variations in Mach number and 
impedance, as well as variations in duct geometry. Before these more complex prob- 
lems a r e  attempted, the finite-difference theory is applied to the simpler problems of 
noise propagation in ducts without flow and with steady uniform flow. 

ducts (refs. 1 to 4), variable-area ducts (ref. 5), and ducts with variations in the wal l  
impedance (refs. 6 and 7). Most recently, numerical techniques were applied to noise 
propagation in turbofan variable-area inlets with hard wal ls  (ref. 8). Reference 3 de- 
veloped the difference equations for noise propagation in an acoustically lined duct with 
uniform mean flow. Results w e r e  presented for a soft-wall duct in the absence of graz- 

In the absence of flow, numerical theories were successfully applied to straight 



latory part of the wave pressure profile and thereby to reduce the number of grid points 
required for a finite-difference solution. Rather than determining the actual pressure, 
the wave envelope concept transforms the governing equations such that they describe 
the envelope of the pressure. The number of grid points can be reduced by one order of 
magnitude. Reduction of grid points by two orders of magnitude is possible for problems 
with large duct length-height ratios and high frequencies. 

The derivation for the complete set of difference equations in complex notation is 
presented, as well as many of the details in the matrix solution. The complex form of 
the difference equations is simpler to program than the real form used in reference 3. 
These details are included so that the numerical techniques can be conveniently pro- 
grammed. Sample calculations are presented, and complete pressure and velocity print- 
outs are given to some sample problems that can be used to debug and check computer 

n 
L 



I 

programs. The limitations of the theory a r e  also discussed. 

GOVERNING EQUATION AND BOUNDARY CONDITION 

The propagation of sound in a duct is described by a solution of the continuity and 
momentum equations with the appropriate impedance boundary conditions. In this sec- 
tion, the basic governing equations and boundary conditions for a two-dimensional rec- 
tangular duct a r e  presented. 
is developed. 

In the next section, the difference form of these equations 

Continuity and Momentum Equations 

The linearized equations for mass  and momentum conservation can be written for 
a Cartesian coordinate system in the following form: 

Continuity: 

ap*+u*- ap* + P$CO *2 (z au* + 5) = 0 
at* ax* 

Axial (x) momentum: 

-+u*-=---  au* au* 1 ap* 
at* ax* pg ax* 

Transverse (y) momentum: 

where an asterisk denotes dimensional quantities. 
ivations of equations (1) to (3) a r e  given in reference 11, for example. 
are defined in appendix A. ) 

locities a re  assumed to be of the form 

The assumptions involved in the der- 
(All symbols 

A s  customary for steady state, the solutions for the dependent pressures and ve- 

(4) 
iw*t* P*(x*, y*, t*) = P'(x*, y*)e 

3 



(5) 

(6) 

io* t* u*(x*, y*, t*) = u'(x*, y*)e 

v*(x*, y*, t*) = v'(x*, y*)e 

where a prime denotes dimensional quantities with the time-dependency removed). The 
final solution will  be represented by the real  parts of the preceding quantities. Substi- 
tuting equations (4) to (6) into equations (1) to (3) and introducing the dimensionless pa- 

io*t* 

rameters 

P' p = -  

u =  

x = -  x* . y = -  Y* 
H*' H* 

(9) 

yield the dimensionless steady- state conservation equations 

(10) 

u = 1 -  . a P + i M  -- au 
ax 27TV ax 

. ap+ iM av 
ay 27T7 ax 

(11) 

(12) v = 1 -  -- 

The dimensionless frequency 7 is given as 

(13) 
w* H* - f*H* 

7 1 = - - - -  
27T c6 CT, 

The dimensionless height y ranges between 0 and 1, and the dimensionless length x 
between 0 and the dimensionless duct length L*/H*. 

4 



Wave Equation 

Equations (10) to  (12) yield the dimensionless wave equation for uniform flow: 

(1 - M 2 )(+) a P + - a2p + (271~) 2 P - i47171M- ap = 0 
ax 

ax aY2 

Equation (14) in difference form could be solved to determine the pressure in the duct. 

sure  and velocities in general have both real  and imaginary parts. Thus, 
In the exponential notation displayed in equations (4) to (6), the dimensionless pres- 

Therefore, each term in the wave equation (eq. (14)) is complex and requires special 
consideration in obtaining a solution. 

I Wave Envelope Concept 

To remove most (if not all) of the axially oscillatory part of the wave pressure pro- 
file, the pressure P is transformed into a new variable p that changes slowly in the 
axial direction. This new pressure p is defined as 

where P is the acoustic pressure and p the pressure of the wave envelope. The real 
parts of P and p a re  shown in figure 1. The effective axial wavelength parameter A+ 
is the wavelength of the oscillation in the soft-wall duct represented by figure 1. 
wave envelope frequency parameter q+ is the effective frequency of this pressure wave 
and is related to A+ as 

The 

+ - 1 + M  =- 

rl+ 

(19) 

5 



This relationship w a s  assumed because in a hard-wall duct, A', Mach number My and 
11' are exactly related as in equation (19) for plane-wave propagation. 

quency q+, which would remove the oscillation according to equation (18), is not known. 
However, work performed in references 4 and 6 indicates that q+ can be approximated 
by q. Therefore, in most problems, q+ will  be chosen equal to q. However, since 
this may not always be the case, r]' is not set equal to q; rather, it is carried along in 
general form. 

ential equation called the generalized wave envelope equation: 

In a soft-wall duct with sound propagating at a frequency of r ] ,  the effective fre- 

Substituting equation (18) into the wave equation (14) yields a new governing differ- 

a 2 2 
K I Q  +Q + K2p + K3 2 = 0 

ax2 ay2 ax 

where 

2 K 1 = l - M  

Examples a r e  presented to illustrate how equation (20) can remove the oscillatory nature 
of the pressure and thereby reduce the number of grid points necessary for  a finite- 
difference solution. 

A' (or q') to remove the pressure oscillation must be considered. The uniform hard- 
wal l  duct, for which the correct answer is known, will now be investigated to determine 
the sensitivity of the final answer to the assumed value (guess) of q+. 

For plane waves propagating in hard-wall infinite ducts in the absence of flow, the 
wave envelope equation reduces to 

In soft-wall ducts, A+ is not known precisely; therefore, the problem of picking 

6 



The exact analytical solution of equation (24) fo r  the wave envelope pressure p is 

The product of equation (25) with e -i2r$x gives the exact pressure fluctuation as de- 
fined by equation (18): 

which is independent of the choice of T,J+, by definition. 

r]+ or Iq - T J + ~  a re  shown in figure 2. For r f  = 0, equation (25) reduces directly to 
equation (26); that is, p(') equals P(l), see the cosine-shape line in figure 2. For this 
assumption, about 12 grid points would be required to describe this pressure profile 
adequately in a difference analysis. 
a value between 0.7 and 1.3 such that 1q - q+1 < 0.3, the exact analytical solution for 
p(') would require as few as three grid points in the difference analysis. The curves 
for q+ between 1.0 and 1.3 a re  the mirror  image of those between 0.7 and 1.0, and 
therefore a re  not shown. If q+ is assumed to be equal to q, the curve for p(') is the 
straight line T,I+ = 1, or 177 - q+l = 0. This line represents the envelope of the pressure 
oscillation. If, for example, it is assumed that q+ = 0.8, the exact solution in fig- 
ure  2 does not represent the true envelope of the pressure oscillation; it is still a gently 
varying function that requires only a few finite-difference grid points to describe its 
shape accurately. Thus, it is necessary only to pick a value of X+ (or 77') in the vicin- 
ity of the true value of 
difference analysis. 
a new form (eq. (20)) that requires fewer grid points in its solution. 

tenuation in a soft-wall duct, where q+ is an unknown. 
tion were made in reference 4 by assuming that 7' = q. 
comparison of the analytical and wave envelope calculations for the optimum soft-wall 
duct attenuation for various 77 and L*/H* values. 

Excellent agreement between the analytical and numerical calculations w a s  obtained 
for the two-dimensional duct example in reference 4. 
case in figure 3, the conventional finite-difference theory required 3600 grid points; the 
wave envelope difference theory required only 100 grid points. 
3500 grid points over the conventional difference theory w a s  obtained. At lower q and 
L*/H*, the savings w a s  smaller. 

In principle, any choice of q+ wi l l  yield the correct answer; however, a poor 

The analytical solutions for p(') from equation (25) for various assumed values of 

However, if, for example, q+ is assumed to have 

to get a savings in the grid points required for a finite- 
In so doing, the differential Helmholtz equation is transformed to 

As another example of how to pick q+, consider the problem of predicting the at- 
Calculations for the attenua- 
Figure 3 (from ref. 4) shows a 

For the q = 5 and L*/H* = 6 

Thus, a savings of 

7 



choice of q+ will  require more grid points than a good choice. Thus, for any assumed 
value of q', it is necessary to check for a converged answer by increasing the number 
of grid points in both the x and y directions, as was done in reference 4. 

Wall  Boundary Condition 

The boundary condition at the surface of a soft-wall duct requires that at the wall  
the acoustic displacement of a particle in the fluid just outside the soft wall  be equal to 
the displacement of a particle just inside the soft wal l  (ref. 11). In addition, the pres- 
sure  and velocity fields at the boundary can be related in te rms  of the specific acoustic 
impedance 5 ,  where 

As a consequence of these two relationships, the fluid velocity at the wal l  is 

and the transverse pressure gradient at the w a l l  is 

The derivations for equations (28) and (29) a r e  given in appendix By equations (B12) 
and (B13), respectively. 

yields 
Substituting the expression for the transformed pressure (eq. (18)) into equation (29) 

ax 
W 

ax 

where 

8 



iM2 w3 =- 
r 2 w  

Exit Boundary Condition 

The exit impedance must be specified at either the duct exit or  some point in the 

The 
far field. 
proximate the analytical results for wave propagation in an infinitely long duct. 
wave propagation in the entrance region of an infinite duct can be represented by a finite 
duct length L* by choosing the exit impedance at L* s o  that no reflections occur. For 
a plane wave propagating in a hard-wall duct with uniform mean flow, the condition for 
no reflections at the duct exit is an impedance of p:c& or  

The exit impedance presented here wi l l  allow the numerical solution to ap- 

1 (34) 
T *  I u x = x  =-  

e H* J 
In the limiting case of zero flow (refs. 2 and 4) and for uniform flow in long ducts, cal- 
culations indicate that equation (34) is a reasonable approximation for soft-wall ducts. 

using the exit impedance condition to eliminate the acoustic velocities from the boundary 
condition. 
wave equation, which contains only pressure terms. 
continuity equation and the two momentum equations (see appendix C for derivation) 
yields the following exit condition (eq. (C15)): 

The axial pressure gradient at the exit can be related to  the pressure at the exit by 

This is necessary since the exit condition is to be used in conjunction with the 
Combining equation (34) with the 

9 



a2 P - 
'e + 

1 - MI2 2aq(l - M2) ay2 
(35) 

e 

Reference 3 used the exit equation for an infinite, one-dimensional, hard-wall duct; 
consequently, the second term in equation (35) was neglected. As mentioned in the IN- 
TRODUCTION, the failure of the earlier formulation to predict accurate transverse 
velocities in short ducts, L*/H* < 1, was  traced to the neglect of the second term in 
equation (3 5). 

32 = L1p+ L2 2 2  
ax e ay2 

tion 

e 

Again, substituting the expression for the transformed pressure (eq. (18)) into equa- 
(35) yields 

where 

In the sample calculations to follow, <e wi l l  be taken as 1. 

equation (30) cannot be used at the exit of the duct. At the exit corner of the duct, the 
transverse gradient at the wa l l  is given as (eq. (D39), appendix D) 

Because of the nature of the finite-difference approximations to be presented later, 

10 



Equation (39) is a new equation; it w a s  not previously developed. 
both the wal l  impedance < and the impedance at the exit Te. 
tion (39) and its  fu l l  rationale a re  discussed in detail in appendix D. 

tion (39) yields 

Equation (39) includes 
The derivation of equa- 

Substituting the expression for the transformed pressure (eq. (18)) into equa- 

= (N1p -I- N2 9) 
ax wal l  exit 

where 

Entrance Conditions 

At the entrance, a uniform pressure profile 

is used. A more general entrance condition, where P(0, y) depends on y, is equally 
easy to treat. In terms of the envelope pressure p, equation (43) becomes 

Axial Acoustic Power 

The sound power that leaves a duct and reaches the far field is related to  the in- 
stantaneous axial intensity at the duct exit. 
12 and 13, the intensity can be expressed as 

On the basis of the discussion in references 



I 11111I I II I 

This equation is an improvement on Ryshov and Shefter's intensity equation (ref. 14), 
which w a s  used in reference 3. The time-averaged intensity over a cycle is 

where the bar denotes the complex conjugate. 
Assuming that the axial velocity can also be expressed in wave envelope form as 

[-i2n77+/( l+M)]x u = u  e a (47) 

and using equations (18) and (47) give the expression for the time-averaged intensity as 

M 

(l 
pia) + MpE + - Ua'a Ix = Real - 

( 2 n d 2  

Thus, the formula for intensity in terms of p and ua has the same functional form as 
equation (46). 

test sect ion 
The total dimensionless acoustic power is the integral of the intensity across the 

By definition, the sound attenuation (the decrease in decibels of the acoustic power from 
x = 0 to x) can be written as 

A dB = 10 loglo(:) 

12 



Pressure Amplitude and Sound Pressure Level 

The pressure amplitude I PI is a useful quantity to indicate how the acoustic pres- 
sure  varies in the duct. By definition, 

In terms of the wave envelope pressure p, 

IPI = l i p  + 

FINITE-DIFFERENCE FORMULATION 

Instead of a continuous solution for pressure, the pressure is determined at iso- 
lated grid points by means of the finite-difference approximations, as shown in figure 4. 
Thus, the differential equations can be changed to a system of algebraic equations in 
terms of the pressure at each point. This set of algebraic equations can be solved 
simultaneously to determine the pressure at each grid point. 

Difference Equations 

The governing difference equations can be developed by an integration process in 
which the wave envelope equation (eq. (20)) is integrated over the area of the cells shown 
in figure 4. 

f f 
Cell a rea  

(53) 

The finite-difference approximations for the various cells shown in figure 4 a r e  ex- 
pressed in terms of the coefficients 

The subscript k denotes the cell number. The derivation and expr-essions for the co- 

13 



efficients a r e  given in appendix D. These coefficients are listed in table I. 

Matrix Solution 

The collection of the various difference equations at each grid point forms a set  of 
simultaneous equations that can be expressed as 

where {A} is the known coefficient matrix, b] is the unknown pressure vector, and [F] - 
is the known column vector containing the various initial conditions. The matrix is 
complex. 

example shown in figure 5. 
To illustrate the detailed structure of the matrix given by equation (55), consider the 

For this case the detailed matrix structure becomes 

I I 
b2 c2 I e2 I I I 

I 

p i  i 
p12 

p13 

*'14 
- -  
p2 1 

p22 

p23 

p24 

p3 1 

p3 2 

-- 

p33 

p34 
- _  
p41 

p4  2 

p43 

p44 - -  
p5 1 

p52 

p53 

P54 

-a3. 

-al 

-al 

- a2 

-0 - 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- -  

-- 

-- 

(56) 
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where the derivation of the coefficients is given in appendix D. The dashed lines illus- 
trate where the matrix can be partitioned into a form that is-tridiagonal, 
abbreviated notation becomes 

I I I I 

I 
I 
I 

B1 I 
---- 

A1 I 
I 

--- J- 

\ I  

I 

1-- --+---- I--- 

B2 I I c2 I ' \  i \  I 

_I-- I I 
t-- t-- I 

-- 

This can be generalized for any number of points as 

0 
92 B2 c2 \ 

A3 B3 c3 \ 
\ \ \  4 Bi Ci 

\ 0 
\ 

An Bn 

F. 

0 

0 

0 

0 

0 

which in more 

15 



I I I I l l  

The difference equations a re  cast in this form and solved by using the computer pro- 
gram written by Quinn (ref. 5), which directly inverts the matrix. 
matrix gives the pressure at each of the grid points. 
to determine the acoustic velocities and intensities throughout the duct. 

The solution of the 
These pressures can then be used 

ACOUSTIC PARTICLE VELOCITIES 

The axial and transverse momentum equations a r e  solved to determine the acoustic 
velocities in the duct. In turn, these velocities, in conjunction with the acoustic pres- 
sure, a r e  used to determine the intensity levels in the duct and the attenuation that the 
duct provides. 

Axial Velocity 

The axial momentum (eq. (11)) can be rewritten as 

where 

p 
M 

In terms of the transformed pressures and axial velocities, substituting equations (18) 
and (47) into equation (59) yields 

where 

+ a=2a71 
l + M  

Runge-Kutta solution. - Since the axial pressure gradient in equation (61) can be ob- 
tained directly from the numerical solution, equation (61) was  treated as a simple or- 

16 



dinary differential equation. As a result, a standard fourth-order Runge-Kutta integra- 
tion w a s  used to solve equation (61). 
found by rewriting equation (34) for Pe = 1 as 

The initial condition used for the solution was  

u e = 2n77Pe 

I =2n77P 'e  

The Runge-Kutta technique worked well  when the wave envelope technique was  not used; 
however, this technique became unstable in many cases when the wave envelope tech- 
nique w a s  applied. The instabilities resulted from the large steps in the independent 
variable x that were used in conjunction with the wave envelope approach. To correct 
this problem, an exact solution to equation (61) w a s  employed. 

Integral solution. - The problem associated with the Runge-Kutta solution could be 
circumvented by using an integration technique. Solving equation (61) and applying 
boundary condition (64) yield 

where 

Equation (65) has a disadvantage in that the pressure gradient is required for the inte- 
gration process. 
parts. Recognizing that 

However, equation (65) can be further simplified by integration by 

iCPXe a [eicps p(s, y)l ds  = e p(xe, y) - eicpx p(x, y) 

and that 

17 
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'Saxe e eiqs &@& ds = e p(xe, y) - eiqx p(x, y) - iq 
as 

and substituting equation (68) into equation (65) result in the following expression for 
the axial velocity: 

The advantage of equation (69) over equation (65) is that the integrand can be found di- 
rectly from the pressure field. 

pressure field from the solution of equation (55). 
can be a problem. The parameter q in equation (69) can be written 

The velocity at any point can be found from equation (69) by using the values of the 
Evaluating the integral in equation (69) 

Therefore, the integral term in equation (69) can be written as 

The exponential in equation (71) represents an oscillating function whose wavelength can 
be considerably shorter than the wavelength associated with the pressure field. In fact, 
in the limit of small Mach numbers, the wavelength associated with the exponential in 
eqQation (71) approaches zero, but the wavelength of the pressure wave is simply the 
inverse of 7. 

dimensionless frequency q of 1, an L*/H* of 3, and a Mach number of 0.5. A 
typical P(') pressure profile in a suppressor duct is shown in figure 6(a) by the dashed 
lines; the solid lines denote the amplitude of the exponential eiqx. Figure 6(b) shows 
similar results when the wave envelope concept is used. In general, as well as in this 
example, the grid spacing in the finite-difference theory is chosen sufficiently small s o  
that the pressure field can be accurately determined. The grid spacing associated with 
the accurate determination of the pressure field wi l l  usually be too coarse to adequately 
evaluate the integral in equation (71) by a conventional numerical integration formula 

To illustrate this more vividly, consider the example of a soft-wall duct with a 

18 



such as Simpson's rule. Using a larger number of grid points would be wasteful, in 
general and, in particular, would defeat the basic idea of the wave envelope concept, 
which is to reduce the number of grid points. Therefore, a combined analytical and 
numerical technique w a s  used to circumvent this problem. 

as the sum of the integrals between each grid point to give 
Polynomial-exponential integration. - The integral in equation (69) w a s  expressed 

lxe p(s, y)e-icPs ds  = lxi+Ax p(s, y)eicPs ds 
i 

A fourth-order polynomial f i t  of the pressure p w a s  constructed from the solution of 
the wave equation for every value of i. 
exactly. 
cessful. 

In turn, equation (72) could be integrated 
The exact formulas a re  given in appendix E. This technique proved very suc- 

Transverse Velocity 

Once the axial velocity is known, the transverse velocity can be quickly found by 
using the condition of irrotationality 

which is developed in appendix C, equation (C10). 
Substituting equation (73) into equation (12) gives 

Thus, the solution of the transverse velocity can be found by a simple differentiation 
process once u is known. As a check, the solution of the transverse velocity can also 
be found by solving the continuity equation (eq. (10)) and applying the boundary condition 
at the w a l l  given by equation (28). 
cussed in the INTRODUCTION. 

given by 

This check led to the discovery of the problem dis- 

In terms of the wave envelope pressures, equation (74) remains unchanged, as 
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AXIAL INTENSITY AND POWER 

In terms of the difference notation, the axial intensity given by equation (48) can be 
written as 

The total power across a particular cross section, as given by equation (49), is written 
in difference notation as 

By evaluating Ei at the entrance and exit positions, for use in equation (50), the sound 
attenuation for the duct is determined. 

SAMPLE PROBLEMS 

As the first example of the difference technique, consider the problem discussed in 
the INTRODUCTION. Recall, for small L*/H*, the transverse velocities as calculated 
from the momentum equation and boundary condition were not equal, even though the two 
approaches should have yielded the same velocity at the wall. An example of this dis- 
crepancy is shown in figure "(a). Now, however, for the new exit condition (eq. (35)), 
the transverse velocities calculated from the momentum equation (eq. (74)) and the 
boundary condition (eq. (28)) a r e  in good agreement, as shown in figure 7(b). This 
agreement comes about because the pressure field has changed due to the introduction 
of the transverse gradient in the exit condition (eq. (35)). 
using the exit condition of reference 3 is 6. 1; the attenuation calculated by using equa- 
tion (35) as the exit condition is 3.4 ,  which is a significant difference. 

point (point of maximum attenuation in the impedance plane) is calculated for a two- 
dimensional duct with an L*/H* of 3.43, a Mach number of 0.3, and the ranges of the 
parameter q and 5 listed in table II. In figure 8, the numerically calculated attenua- 

The attenuation calculated by 

In another example of the difference technique, the noise attenuation at the optimum 
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tions are compared with corresponding analytical results (ref. 9) that a r e  applicable to 
infinite ducts. The numerical results (lines) and the analytical results (circular sym- 
bols) for the maximum attenuation are shown in figure 8 to be in very good agreement. 

For symmetrical ducts (impedance identical at both walls), the pressure profiles 
a r e  symmetrical about the centerline of the duct. In this case, aP/ay can be set equal 
to zero at the centerline of the duct. Consequently, the number of grid points in the 
y-direction could be cut in half. 

The deviation between the closed form and the numerical analysis shown in figure 8 
at the lowest dimensionless frequency is assumed to occur because the pgc; exit im- 
pedance used in the numerical analysis begins to deviate from the exit impedance in the 
analytical results (ref. 15, p. 246). By extending the soft-wall duct (ref. 2, appendix E), 
it is possible to reduce the reflected contribution and thereby more closely simulate an 
infinite duct, which is the basis for the analytical calculations. The dashed line in fig- 
ure 8 results from increasing the duct L*/H* to 6.86 and evaluating the attenuation at 
an x of 3.43. 

PROGRAMMING AIDS 

Appendix F contains the solutions of four additional sample problems. Complete 
pressure and velocity printouts a re  given and can be used to debug and check the com- 
puter programs. The pressure profiles for the two standard solutions that do not use 
the wave envelope concept (q+ = 0) were checked by two independent computer programs 
(refs. 2 and 5) that used two different techniques for solving the matrix equations. 
Therefore, if the same difference equations a re  programmed, agreement of the pressure 
field to three-place accuracy should be expected. 

For the 
uniform-velocity cases, these flow fields have not been double checked by independent 
programming because these solutions have been developed from the new techniques pre- 
sented in this report. 

The outputs of the velocity fields a re  also presented in appendix F. 

LIMITATIONS OF THEORY 

At low frequencies (q 0.5), the exit impedance p;cg used in this analysis does 
not necessarily lead to a condition of no reflection at the duct exit. 
reflections are large, the numerical solutions wi l l  not necessarily be equal to the ana- 
lytical infinite-duct results, For example, the attenuation calculated by the analytical 
infinite-duct theory for figure 7 w a s  2.0 decibels, which is 1.4 decibels lower than the 
numerical results. Doubling and tripling the duct length produced large oscillations in 

Therefore, if the 
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" the pressure amplitude I P I in the axial direction. This oscillation was  interpreted to 
mean that large reflections were occurring at the exit of the duct. These calculations 
were performed without using the wave envelope theory. At low frequencies the wave 
envelope theory is not required since the wavelength of the pressure is very long. 

The present wave envelope theory is useful only in those cases where the reflected wave 
is small compared with the forward-going wave, since the reflective component has been 
neglected in equation (18). The wave envelope technique may also be limited to the case 
with a single dominant mode or  to the special multimodal case where the modes have 
similar effective axial wavelengths. In all cases, in solving a particular problem by 
using finite-difference theory, the grid spacing should be doubled in order to check for 
convergence. 

In general, a pressure wave is composed of a forward-going and a reflected wave. 

Finally, assuming pe equals 1 in equation (34) applies strictly to a single plane 
wave. 
than plane. 

Therefore, some reflection will  occur at the duct exit for pressure waves other 
However, for q > 1, this reflection is generally small. 

CONCLUDING REMARKS 

A finite-difference wave envelope theory for sound propagation in a two-dimensional 
soft-wall duct with uniform mean flow has been presented. Previous difference theory 
did not give valid attenuations o r  acoustic velocities for ducts with L*/H* of the order 
of 0 . 5 .  The difference theory with plane-wave input developed herein is shown to be in 
good agreement with closed-form analysis for the complete range of duct parameters. 

Also given a r e  the latest numerical procedures in applying finite-difference tech- 
niques to ducts. 
dixes. 

The derivations for the various procedures a r e  presented in appen- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 6, 1977, 
505-03. 
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APPENDIX A 

SYMBOLS 

A coefficient matrix 

Ai 

ak 

Bi 

bk 
C constant 

submatrix ‘i 
c;s speed of sound, m/sec 

‘k 

subm atr ix 

matrix element 

submatrix 

matrix element 

matrix element 

matrix element dlr 
AdB sound attenuation, dB 

Ei 

EX 

E O  

total acoustic power (eq. (77)) 

acoustic power (eq. (49)) 

Ex evaluated at x = 0 

matrix element ‘k 
- F initial-condition column vector 

initial- condition submatrix column vector F1 
f* frequency, Hz 

H* channel height, m 

A acoustic-intensity axial direction 

i 0 
KlY KZY K3 
L* length of duct, m 

L1’ L2 
M Mach number, U*/$ 

m 

N index: 0, 1, or  2 

coefficients of generalized wave envelope equation (eq. (20)) 

exit-condition coefficients (eq. (36)) 

total number of grid rows 
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N1’ N2 
n 

P 

’i 
P* 

p i  
P’ 

P 

P 

- 

Pi j 

Qi 
S 

t* 

U* 

U 

a U 

V 

xO 
Ax 

Y 

AY 

Z* 

z 

“i 

P 
E 

wall exit coefficients (eq. (40)) 

total number of grid columns 

dimensionless pressure fluctuations P(x, y) = P’/P: 

submatrix- column pressure vector 
pressure fluctuation, P*(x*, y*, t), N/m 2 

amplitude of pressure fluctuation, N/m 2 

P*(x*, y*), N/m2 

pressure-column vector (eq. (55)) 

wave envelope pressure 

element of pressure at i, j grid point 

polynomial coefficients 

dummy variable of integration 

time, sec 

mean flow velocity in x-direction, m/sec 

dimensionless acoustic particle velocity in x-direction 

dimensionless axial velocity (eq. (47)) 

dimensionless acoustic particle velocity in y-direction 

dimensionless transverse velocity (eq. (75)) 

boundary-condition coefficients (eq. (30)) 

dimensionless axial coordinate, x*/H* 

starting grid position for polynomial fit 

axial grid spacing 

dimensionless transverse coordinate, y*/H* 

transverse grid spacing 
acoustic impedance, kg/m 2 -sec 

dummy variable of integration 

coefficients of polynomial f i t  

2 q / M  (eq. (60)) 

l/iq Ax (eq. (E16)) 

specific acoustic impedance 
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q dimensionless frequency 

q+ wave envelope frequency 

A+ effective axial wavelength 

5 particle displacement 

p8 

(T 

CP potential function 

40 

w* circular frequency 

Subscripts : 

3 density of uniform medium, kg/m 

27rqc/(1 + M) (eq. (62)) 

p - IY (%I. (66)) 

e 

i 

j 

k 

opt 

W 

X 

Y 

exit condition 

axial index (fig. 4) 

transverse index (fig. 4) 

cell index 

optimum 

wal l  

axial position 

transverse position 

Superscripts: 

* dimensional quantity 
? dimensional quantity with time function removed 

(-) complex conjugate 

(1) real  part 

(2) imaginary part  
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APPENDIX B 

DISPLACEMENT CONDITIONS 

This appendix develops the relationships between the transverse velocity just inside 
an acoustic absorber and the transverse velocity just outside the absorber in the fluid 
medium. The development follows that of reference 11. By definition, the acoustic 
velocity of the medium in a duct can be related to the displacement of the particle by 

where an asterisk denotes a dimensional quantity. Assuming a harmonic displacement 
and velocity of the form 

iw*t* v* - t* N e 

gives 

J where a prime denotes a dimensional quantity with the time function removed. 

can be expressed as 
With the absence of convection inside the absorbing wall, the transverse velocity 

a t ;  v* =- 
at* 

Again, for harmonic displacements as in equation (B2), the transverse velocity inside 
the wal l  becomes 

v h  = iw*t& 

or 
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The continuity of particle displacement requires that at the interface between the ab- 
sorber and the fluid 

,E& = 5'1, 037) 

Combining equations (B3), (B6), and (B7) yields 

v q w  =IT&+-- u* 
iw* ax* 

The impedance condition at a w a l l  can be written as 

P* 
< =  * * *  

pocovw 

or for harmonic displacements (eq. (B2)) the wa l l  velocity becomes 

Substituting equation (B10) into equation (B8) yields, for the transverse velocity at the 
wal l  in the medium, 

POCO< iw* ax* 

In dimensionless form, 

Substituting equation (B12) into equation (12) in the main body of the report yields the 
displacement boundary condition at the wall, 
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APPENDIX C 

EXIT CONDITION 

The derivation of the exit boundary condition for a soft wal l  is now presented. The 
goal of the derivation wi l l  be to relate the axial pressure gradient at the exit to the im- 
pedance and pressure at the exit. This requires some manipulation of the continuity and 
momentum equations in order to eliminate the acoustic velocities from the boundary 
condition. This is necessary since the exit condition is to be used in conjunction with 
the wave equation, which contains only pressure terms. 

At the exit, the impedance relationship can be written 

or 

At the exit, the momentum equation (eq. (11)) must also hold; therefore substituting 
equation (11) into equation (C2) yields 

i-+i--= au at the exit plane 
ax 2i1-v ax pe 

The axial gradient of u in equation (C3) can be expressed in terms of the transverse 
velocity v by using the continuity equation. Equation (10) can be rewritten as 

2 ap - av 
ax ax ay 

= -i(27rq) P - 2n-qM- - 

Substituting equation (C4) into equation (C3) yields 

ax 
- 

1 - M2 
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The transverse gradient term can also be expressed in terms of pressure. An ex- 
pression for the transverse velocity gradient is obtained by differentiating equation (12) 
with respect to y. 

Substituting equation (C6) into equation (C5) yields 

-i(27rq)(t - M) 

- -  ap - P +  iM - a2p + iM2 d(z) at the exit plane 
ax 1 - M2 2sq(i - ~ 2 )  ay2 (2a?1)2(1 - M ~ )  a~ ax 

(C7) 

The axial gradient in v in equation (C7) can be replaced by the transverse gradient 
in u. Differentiating the axial momentum equation (eq. (11)) with respect to y and 
the transverse momentum equation (eq. (12)) with respect to x and subtracting these 
equations yield 

which has a solution 

Since the desired solution should also be valid at a Mach number of zero, the constant of 
integration is taken as zero; thus, 

du - dv - _ -  
dY dx 

This is the condition of irrotationality that is anticipated from irrotational potential flow 
theory. If the potential functions u = &@/ax and v = a9/ay had been assumed, equa- 
tion (C10) could have been assumed immediately without any manipulations. Substituting 
equation (C10) into equation (C7) yields 
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The transverse gradient of u can be found from the exit impedance relationship. 
Differentiating equation (C2) with respect to  y yields 

In this report, <e is assumed to  be constant and independent of y; therefore, 

Differentiating one more time gives 

ay2 <e ay2 

Substituting equation (C14) into equation (C11) yields 

For the case under consideration in this report, <e = 1. Therefore, equation (C15) re -  
duces to 
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APPENDIX D 

FINITE-DIFFERENCE EQUATIONS AND COEFFICIENTS 

The finite-difference equations for the various cells shown in figure 4 can be ob- 
tained by integrating the wave equation over the cell area. 

where the plus sign (+) in the upper limit of integration means to evaluate the param- 
eters along either the upper or right-hand boundary of the integration cell, shown in 
figure 4 by the dashed lines, while the negative sign (-) applies to either the lower or 
left-hand boundary of the integration cell, depending on whether x or y is considered. 

For convenience, equation (Dl) is broken into four separate integrals 

Each of these integrals can be integrated 

+ K3P dy = 0 

- s’ t 

x-axis 

The various pressures and their derivatives in equation (D3) a r e  evaluated at the edges 
of the cells, designated by the + and - signs. These terms wi l l  be different for each 
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cell because the boundary conditions, as well as the size of me cell, vary. 

Central Cell 1 (k = 1) 

In this region, 

f d x = A x  

L+ dy = Ay 

Substituting equations (D4) to (D6) into equation (D3), performing the required integra- 
tions, multiplying each term by -(Ay/Ax), and grouping the terms into the form given 
by equation (54) yield the following coefficients for the difference equations: 

2 
a l = - K  2 + K 3 m  

‘Cx,” 2Ax 

bl = -1 

2 1 c1 

dl = -1 
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Upper-Wall Cell 2 (k = 2) 

In this region, ap/axI+, pi+, and dx remain the same as in cell 1. In this 
region, ap/aylf takes on the value of the boundary condition given by equation (29); 
therefor e, 

d x = *  

When equation (D14) is substituted into equation (D3), integrating ap/ax I and 
a 2 2  p/ax I w  yields 

Also, 

[+e ax 

W 

f d y = *  
2 

Substituting equation (D4), ap/ay I - from equation (D5), equation (D7), and equations 
(D14) to (D17) into equation (D3), performing the required integrations, and multiplying 
each term by -2(Ay/Ax) yield the following coefficients: 

0 

a2 = al + w2 4 - 2w3 2 
2 Ax Ax 

b - - 2  2 -  



c2 = c1 - 2W1 Ay + 4W3 fi 
2 Ax 

d2 = 0 

e2 = el - w2 4 - 2w3 .hy 
2 AX Ax 

~n equation (54), j takes on the value of m. 

Lower-Wall Cell 3 (k = 3) 

A similar derivation applies to the lower wall. In performing the derivation, re-  
member that the impedance is a vector quantity and must be taken as negative at the 
lower wall  if the outward normal of the velocity is not used at the lower wall. The fol- 
lowing coefficients result: 

b3 = 0 0324) 

c3 = c2 

d3 = -2 

e3 = e2 

In equation (54), j takes on the value of 1. 

Central Exit Cell Number 4 (k = 4) 
i. 

In this region, ap/aylf and f dy remain the same as in cell 1. In this region, 
ap/axJ+ takes on the value of the exit condition given by equation (36); therefore, 
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I 

When equation (D28) is substituted into equation (D3), integrating the a 2 2  p/ay term 
yields 

Also, 

JI+"=y Ax 

Substituting equations (D5), (D8), and (D28) to (D31) into equation (D3), performing the 
required integrations, and multiplying each term by -2(Ay/Ax) yield the following coef- 
ficients: 

b - - I - -  2K1L2 
Ax 4 -  

K3 Ay2 4K1L2 2K1L1Ay2 
c4 = c1 - +-- 

Ax Ax Ax 

d - - I - -  2K1L2 
4 -  Ax 

e4 = 0 (D36) 

In the problem, is left in these equations in the event that a differ- 
ent value of <, might be used at some future date. Also, in equation (54), i takes on 
the value of n. 

is 1; however, 
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Upper-Corner Exit Cell 5 (k = 5) 

= N1p + N2 3 
ax 

The corner condition combines both the exit and wall  impedances in a single cell. 
In this region, ap/axl+ is again defined by equation (D28). 
gration in equation (D3) yields 

Performing the first inte- 

wall  exit 

The term ap/ay(+ is defined by equation (30) in the body of the report. Unfortunately, 
the second derivative term a p/ax 1, in equation (30) can not be evaluated in this cell 
because only two grid points are available in the x-direction. 
required to evaluate a second-order derivative. 

exit impedance. At the exit, for the irrotationality condition (eq. (73)) and the im- 
pedance condition (eq. (C13)), we can write 

2 2  

Three grid'points a r e  

This problem can be circumvented by redefining the wall  condition in terms of the 

Substituting equations (D38) and (28) into equation (12) and solving for ap/ay yields 

In, terms of the transformed pressure, defined by equation (18) in the body of this 
report, equation (D39) becomes 

where 

N1 = mi [I - A?)] l + M  77 
l + -  
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Assuming 

then 

In addition, plf is the same as in cell 4 (eq. (D30)) and 

+ 
2 

Substituting equations (D30) and (D37) into equation (D3), performing the required inte- 
grations, multiplying each term by -4(Ay/Ax), and grouping the terms into the form 
given by equation (30) yield the following coefficients: 

a + 4K1L2N2 * + 2N2 9 
2 Ax “ 5 =  4 

Ax 

d5 = 0 
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e5 = 0 

In equation (30), j takes on the value of m and i takes on the value of n. 

- 
Lower-Corner Exit Cell 6 (k = 6) 

A similar derivation applied to the lower wall  (see discussion of cell 3) yields 

a6 = a5 

b6 = 0 

C6 = c5 

dg = dg 

e6 = 0 

In equation (30), j takes on the value of 1 and i takes on the value of n. 
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APPENDIX E 

POLYNOMIAL- EXPONENTIAL INTEGRATION 

The integral in equation (69) is expressed as the sum of the integrals between each 
grid point: 

n 

6"' i 

x.+Ax 

P(S, Y)eiqs ds  =xli p(s, y)eiqs ds (El) 

A third-order polynomial f i t  of the pressure p is constructed from the solution of the 
wave equation 

where 

Starting point: 

xo = 0 if x. 1 = o 

Central points: 

xo = xi - Ax if 0 < xi < xe - Ax 

End point: 

x O = x i - 2 A x  i f x . = x  - A X  i e  

Substituting equation (E2) into equation (E 1) gives 

The integral of the polynomial in equation (E6) wi l l  be integrated exactly by using 
formulas given in standard integration tables (ref. 16). 
gration, let 

However, to simplify the inte- 
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z = s -  xO (E71 

Therefore, equation (E6) becomes 

n 6"" p(s, y)eiqs ds  =c e W X O  ['Ax-xo (cue + a l z  + a2z2  + a3z3)di9' dz (E8) 

i 

Furthermore, to ease the numerical integration, let 

xi - x0 = N AX 

xi + AX - x0 = (N + 1)Ax 

where 

Starting point: 

Central points: 

N = I  if O < x i < x e - A x  

End point: 

N = 2  if x . = x  - A x  i e  

Therefore, equation (E8) becomes 

By using equations (565. 1, 567.1, 567. 2, and 567. 3) from reference 16, the integral 
for  equation (E14) can be expressed as 

40 

~ . . .. - . . .. I 



n 

iqo Ax - 1) + a1 Ax[eiqo Ax(N + 1 - E) - (N - E)] 
iqos ds =ZE Axe iqxi k 0 ( e  

i 

+ a2 Ax 2 (e iqo Ax EN+ 1)2 - ~ E ( N +  1) + 2c2] - (N2 -   EN+ 2 ~ ~ ) )  

3 iqo Ax + cy3 Ax {e [(N + l I3  - ~ E ( N  + 1)2 + 6c2(N + 1) - 6e3] 

- (N3 - 3eN2 + 6e2N - 6 ~ ~ ) )  (E151 

where 

1 E =- 
icp Ax 

The expressions for  the coefficients ao, al, a2, and cr3 can be evaluated directly 
from the formulas 

where 

8Q2 - 5Q1 - 3Q3 

2 Ax 
a2 = 

Q3 - 2Q2 + Q1 
a 3 =  ~ 

2 Ax2 
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APPENDIX F 

SAMPLE PROBLEMS 

The appendix contains complete pressure and velocity printouts for four sample 
problems; These printouts can be used to debug and check computer programs. 

Problem 1 

Plane 
pressure 
wave 7, 

The input is 

77 = 0.6 

q+ = 0 (wave envelope concept not used) 

M = O  

L*/H* = 0.5 

5, = 0.16 - i 0.34 

NO, Y) = 1 

n = 5  

m = 10 
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The calculated values are 

AX = 0.1 

Ay = 0.1111 

Eo = 1.30  

E, = 0.128 (X = 0. 5) 

AdB = -10.04432 

k ak % ek 
- . l O U + G l  .GOO . 4 2 9 + o i  .no0 1 - .123*01 .CCO 

2 - . 123*01  -030 - . Z O G + O l  .E00 .22R+O1 .949+DL' 
.COG .uno .2ZR+01 .949*OC 3 - .123+01  .0(10 

4 - . 247+01  .OD0 - .100*01 .on0 . 429+C1  .931+CG 
5 - .247+01 .OD0 - . 2 n o + o i  .GOO . 2 2 8 + 0 1  .1E8+111 
6 - . 247+01  -000 .DO0 .on0 . 228+01  . l E E + ? l  

dk ek 

- . i n o + o i  .COG 
.bPO .LOO 

- . 2F i l+o l  .on0 

.0n0 .000 

.!loo .n00 

.nor .n00 

i x position i ( P I  j I P I  j IpI 
3 . i n o + ~ i  
3 . 7 9 3 + o n  
3 . 5 7 a + n n  
3 .393.00 
3 . Z h 2 + f l l  

j IPI 
5 . lPO+Ol  
5 .92b+OO 
5 . 792*00  
5 .6sn+ou 
5 .541+DO 
5 .5@0+00 

IO . i n c + o i  
1 0  . l O E + O l  
l o  . l 0 5 + 0 1  
1 0  .703+0L 
10 .599.00 
10 . 5 9 a + 0 0  

j PI 
4 . 1 0 0 + 0 1  
4 . B E t i + O P  
4 .717+0C 
4 .5bC+OP 
u . w h + ~ r  
u . q n u + u o  
9 . 1 0 0 + 3 1  
9 .725'OC 
9 . 51Ef3P  

9 . lb9+tiO 
0 .144+GP 

9 . 3 i a + o r  

, I  I ,  

1 .0000 1 . 1 @ 0 + 0 1  2 . i n n t o 1  
z . lU00+OO i . i o a + o 1  2 .775*00 
3 . 2 "00+00  1 .10S+Ci  2 . 5 1 8 + 0 0  
4 .3( i00*00 1 . 7 9 3 + 0 0  2 .318*00 
5 . U U O O + U O  1 . 5 9 9 + 0 0  2 .lf9+00 

3 . i l 3 + 0 @  
6 . i n o + o i  
6 . 9 2 b + O t  
6 r792*OD 
b . 6 5 0 + 0 0  
b .541+U@ 
b .5CO+OG 

7 .1@0+01 
7 . E t - G + O O  

7 . S h 0 + 3 0  
7 . 4 4 6 + D O  
7 . u n 4 + 0 0  

7 . 717+0n  

.110+F1  

.793+0')  

.578*C'1 

. 3 9 3 + 0 P  

. i h Z + C S  

.2 1 3 + 0 0  

j 
1 . 1 P C * 0 1  
1 .341+!21! 

j 
7 . 1 "0+01  
7 . 5 7 4 + 0 0  
7 . 1 1 1 + 0 0  

2 -.lCb+JS 
7 - . 1 ~ 2 + n n  

7 - . i n 9 + ~ 3  
7 . i n o + o i  
7 . a t ~ + o n  
7 . b u u + o n  
7 . q ? i + o n  
7 . Z ? B + O I !  
7 . b70-01  

&) 
. l Z C + O l  
. 7 5 2 + 0 "  
. 454 '01  
. 2 lb+OC 
,775-C1 

. .1u2-01 
. i r c + o i  
. 7 5 2 + n n  

. 2 1 6 + n ~  

. 4 5 4 + 0 0  

, 725-01  
..14?-P1 

j p(1) 
5 . 1 ? 0 + 0 1  

5 .729+UC 

5 . 3 ? 3 + U C  

s . 9 r 9 + 5 0  

5 .51s+nu 

5 . ~ i n * n o  
i n  . i w + o i  

12 - .7 'a+oo 
io - . 477+n0  
1 0  -.131+OG 

10 1C - . S l l * @ D  .341*3L 

x position 
.CC30 
.1LT.O+00 
.2GCO*CJO 
.3COO+bO . 4 G C O t C O  
. 5 G I l O + b O  
.coo0 
. l b O O + U O  
.2rJOE*OO 
.3tiD@+00 
. 9 L 0 0 + 0 0  
. s ~ o n + c o .  

j 
3 
3 
3 
3 
3 
3 -  
8 
E 
8 
8 

1 -.511*OC 
1 - . 7 ' , a+zc  
1 -.977+OL! 
1 - . 13 l*EG 

6 .9"9+OL 
6 .7?9*GG 

b . i r o + c i  

6 . 5 1 5 * C C  
b .3P3+C@ 
6 .11O+CO 

8 
8 -  

i x position ,(2) j p(2) 
1 .Ob00 i .d rc  7 .or0 
2 . lLOJ+UO i - . i r 3 + ~ i  2 -.4U3+OO 

,(2) 
3 .C.*O 

3 - . 3 5 E + C ~  
3 -.377*CS 
3 - . 2 5 1 * 0 0  

3 - .z5o+rn 

j p(2) 
5 . o r 0  
5 - .174+Oi  
5 -.31G*CO 
5 -.39b+CC 
5 - . L l l e + f l l ;  
5 - . w a + u r  

10 . > T U  
1 0  - .1?3*01 
1F  - . 9 1 b + ? L  
1 3  - . Z ? c r + c C  

11; . f P U + C C  
i c  .353+01;  

3 .2LO(l*UO 1 -.51b+OG 2 - . 5pb+00  
4 .3:no+co 1 - .234*i i )  2 -.ZR5*SC 
5 . U L C O + U O  1 .3b3+CO 7 - .2p9-01 

I . C c m  6 . ~ r c  7 .WL 
. l t @ O + C O  b -.17U+l;', 7 -.10C+3C 

3 . Z L C O * J O  b - .SlC+Cl.  7 - . J l b + L 1  
9 .JGP3*CO b - .Z0b+C3 7 -.371i+C? 
5 t - - . L ) U P * L C  7 - .3P4*C1 . 4 C O O + D E  

b .sonu+co 1 .5*4*c: 2 . 9 ? 5 + 1  

b . qL IO+LC b - . 4 $ 8 * [ L  7 - .316r;-  
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i ; i o r + n i  
5 . 1 6 3 * 0 1  
5 . 111*01  
5 . b % 9 + d 0  
5 .rr55+no 
5 . 4 4 3 + O G  
10 . 177 tG2  
10 . 4 1 2 + 0 1  
10 - . 4 9 9 + 0 1  
1 0  - . 718+01  
1 0  - . 315*01  
10 -.Zbb+O@ 

i 
1 
2 
5 
4 
> 
b 
1 
2 
3 
4 
5 
6 

j 

2 
2 
2 
2 
7 
7 
7 
7 
7 
7 
7 

j 
2 
2 
2 
2 
2 
2 
7 
7 
7 
7 
7 
7 

j 
2 
2 
7 
2 
2 
2 
7 
7 
7 
7 
7 
7 

j 

2 
2 
2 
2 
2 
7 
7 
7 
7 
7 
7 

i x position . ouoo 
. 1 L O O + l ] O  
. 2  t i O O + O O  
. 3 L O O * G O  
.4uoo*oo 
. 5 [ i 0 0 * 0 0  
.DUO0 
. 1 0 0 0 + 0 0  . 2l,00*00 
.3LDO+OO 
.9@00*00 
.5L00+00 

.(2) 
- . 268+01  
- . 5 7 0 * 0 1  
- . 3 P G * O I  
- . 178+01  

.593*00  

.744-01 
- .724+C0 
- .191+G1 
-.2?8.01 
- . 211+01  
- .174+01  
-.i~2+01 

$4 1 - . l be* [ l l  
3 - . 2 9 9 + 0 l  
3 -.2"0+01 
3 - .191*01 

3 - .679*00 
8 - . lbR*Ol 
8 - .299+01  
8 - . 2 8 0 + 0 l  
8 -.19l*Ol 
9 - .1@5*ll l  

3 -.im+oi 

e - . e ~ s + c s  

.(2) 
!a -.724rOP 
4 - . 191+01  
4 - .228*Gl 
4 - .211+01 
4 - .174+C1 
4 - .152+C1 

9 - . 520+01  
9 -.38C*01 
0 - . 128*01  

9 .744-01 

9 - . 2 ~ 8 + 0 1  

9 .39s+on 

$1 
-.239+OC 

5 - .145*01 

5 - . 217*01  
5 - . ~ r s + o i  

s - . 2n2+01  
5 - . i n s + o i  

10 - .795*00 
10 - .1P8+02  
10 -.b(r9*01 
1 0  .b20*0O 
1 G  . 302+01  
10 . 127*01  

I 
2 
3 
4 
5 
6 
1 
2 
3 
9 
5 
6 

x position 
.OGOJ 
- 1  U D O + G O  
.2bOO*CO 
. 3000+00  
. 4 0 0 0 + G O  
.5L00.00 

. l G O O + O O  

.2COO+OO 

. 3 G @ O * U O  

.sc00*UO 

.5LOO.U0 

.onno 

f $1) 
1 .0"0 
1 - . 8 7 0 + 0 1  
1 - .552+01  
1 . 5bC+00  
1 .466+Gl 
1 . 5 5 3 + 0 1  
b .OCO 
b - 5 1 7 - 0 1  
6 .898-G2 
b - . I 2 6 1 0 0  
6 - . 2 8 5 + t O  
b - .397*30 

.LPU 
- .273*01 - .21  3*0  1 

. 3 3 2 * 0 0  

. 2 5 1 + 0 1  

.3u0*01 

.GOO 

. i 5 8 * 0 ' 1  

. 1 9 1 + O C 1  
- . 3?8+JC 
- .bh4+00 
- . 1?2+G1 

9 . o m  

4 - . i u i + o r  
4 - . 258*U@ 

4 .328+OF 
4 .864+0(1 
4 .122*01  

9 . 2 7 3 + 0 1  
9 . 213+01  

9 - . 251+01  
9 - .340+01 

q .on0 

9 - . 332+3n  

5 .no0 
5 - .507-01 
5 -.898-02 
5 .12b*00  
5 . 2 8 5 * D O  
5 . 397*00  

10 .ono 
1 0  . 820*01  
I O  . 5 5 2 + 0 1  
10 - . 560*00  
10 - . 4 b 6 + 0 1  
10 - . 5 5 3 + 0 1  

1 
2 
3 
9 
5 
6 

.(2) ! .J@G 
3 . 1 7 9 * 0 1  
3 . 2 2 7 + 0 1  
3 .242.01 
3 . 178*01  

8 .il')O 
8 - . 1 2 9 + 0 1  
8 -.227*01 
8 - .242*01 
e - . I78151  
8 - .876*C1 

3 . 8 7 6 + r n  

i x position 
.OU00 . 1000.00 
.2000+00 
. 3 0 0 0 + 0 0  
. 4 U D O + O O  
.5000+00 
.oooo 
. l L O O . J O  
.2GOO*OO 
. 3 0 0 0 + 0 0  
. 4G00+00  
.5UOO+UO 

5 . o m  
5 . 2 1 7 + 0 0  
5 .370+OO 
5 . 4 1 0 + 0 0  

4 .I100 
4 .b91+0[1 
4 . 119*01  
4 . 1 3 G + 0 1  
4 ~ 1 0 3 . 0 1  
4 .5¶1+GC 
9 . O D 0  
9 - . 1 9 7 + 0 1  

9 - .411*01 
9 - . 2 5 3 + 0 1  
9 - . 7 9 9 + 0 0  

9 - . q n ~ + o i  

1 .OCO 
1 . 2 2 4 * 0 1  
1 . 7 3 9 + 0 1  
1 . 715*01  
1 . 3 0 4 + 0 1  
1 -.538*00 
t .on0 
b - .217+ t i0  
b - . 370*00  
6 -.910*00 
b - .337+00  
6 -.197+CG 

5 . 3 7 7 + 0 0  
5 .197.00 

10 .on0 
10 - . 2 2 4 * 0 1  
10 - . 7S9+01  
1 0  - .715*01 
I C  - . 3@9+01  
10 . 5 3 8 * 0 0  

Problem 2 

Plane \ I  
pressure I 
wave T, 

45 



The 
Problem 2 is the same as problem 
input is 

1 except that the wave envelope concept is used. 

0.6 

77' = 0.6 

M = O  

L*/H* = 0.5 

5 = 0.16 - i 0.34 
W 

P(0, Y) = 1 

n = 5  

m = 10 

The calculated values are 

AX = 0.1 

Ay = 0.1111 

Eo = 1.21 

E, = 0. 153 (X = 0. 5) 

AdB = -9.01164 

. roc . uco 
.CUC .n00 
.ntr .rm 
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i 
1 
L 
3 
4 
5 
b 
I 
2 
3 
4 
> 
b 

i 
1 

3 
4 
5 
b 
1 
2 
3 
4 
5 
b 

i 
1 
: 
J 
4 
5 
b 
1 
L 

4 
5 
b 

i 
1 
2 
3 
4 
5 
b 
1 

3 
4 
5 
b 

i 
1 
c 
3 
4 

I 
L 
J 
4 
5 
b 

i 
1 

3 
4 
5 
b 
1 
2 
3 
4 
5 
b 

x position 1 
1 
1 
1 
1 
1 
1 
b 
b 
b 
b 
b 
b 

j 
1 
1 
1 
1 
1 
1 
b 
f. 
b 
b 
b 
b 

j 
1 
1 
1 
1 
1 
1 
b 
b 
b 
b 
b 
b 

j 
1 
1 
1 
1 
1 
1 
6 
b 
b 
b 
b 
6 

j 
I 
1 
1 
1 
1 
1 
b 
b 
b 
b 
6 
b 

j 

1 
1 
1 
1 
1 
1 
b 
b 
b 
b 
b 

j IPI 
2 . i p o + o i  
2 .738+311 
7 .573+30 
z . 3 ? L + O C  

2 . l h l + 3 0  
7 . l " C + 3 1  

7 .7-2*:1 
1 .57[r+3%7 
1 . 4 = 9 . ; 7  
7 .418.3C 

7 . i87+:n 

i . n ~ c + o i  

x position 
.311@0 
.1 lCJ .00  
. ? L O O + U O  
. 3 L C C + C O  
. 4 t O O + L O  . s m o + i r o  
.GLCO 
.1103*G0 
. 7 u ~ ~ + ~ n  
.3LP3*UO . "@C + G O  
.5i?n+uo 

1 

z . ~ 1 4 9 + 3 n  

2 . l"L*Ol 
? .712.31) 

2 . 2 1 2 + J O  
2 e27b-31  
? - .331-J1  
7 .1"0*01 
7 . d7L*O0  
7 . b 9 4 + 3 ?  
1 . 5 7 9 * 3 J  

1 .378*00 
i . l t i i + i n  

. l ? O + C l  

. 1?9  *LO 

. J ^ Q + C O  
- . h C n - C l  
- . 4 1 4 * 0 0  
- . 5 4 1 * t 0  

.l"O*Ol 

. 9P8*0O 

. 7 5 1 * 0 0  

. 5 0 4 * O J  

.488+CO 

. 1 1 5 3 + C G  

3 . I P C + ~ I  

3 . 5 o a * r ~  

3 . 2 7 c : r ~ n  
3 . z z i + w  

3 . 7 9 f i . i "  

3 . 4 1 3 * S 7  

Y . l " O + " l  
p. . 1 ~ 8 + " "  
8 . 5 - 8 * c C  
9 . 4 " 3 . l U  
a .27C+?n 
e .221.cn 

2 .L"C 
7 - . l " b t 3 0  
7 - . L ' 7 . : 9  

'1 .,"I- 

8 . 4 l ' - P l  
P .4E9-L1 
8 . * Q 4 - ^ 1  
P .4"3-'1 
8 .1C'-ul 

J1) 
a 

. lF .bfLi .  

.7"+D1 

.5 1 4  f L1? 

- . 3 4 O + C 1  
- .3L9*01 
- .112*31 

. l * l * C l  

. i ' 8 + 0 1  

. 2 2 1 + 0 1  

. 7 ? R + U 1  

. i ^ b + U l  

. lh9.C1 

J1) 
a 

7 .5D9*C1 
2 .LI=9*01 
7 . l a i r 3 1  
I . i c ~ + : i r  
? - . l C 1 + J J  

7 . 2 r 9 * 3 i  
7 - . lhu-Ul  

7 .2 '2*01 
1 . ~ ? b + l l  
1 .L^fi*Cl  
7 . l Q l * L l  
1 .I 'E*31 

x position 

x position 

j "(1) 
a a 

. G P O  
- .b39*01 
-.YIZ.Ol -. 6 3 4  *U 1 
-.3"0*L1 
- .15R+Ll  

. 1 1 1 + 0 0  

. 2 4 1 + c n  

.313+Ul- 

.LOO 

. 3 r i + o t  

j 
a 

2 . L I U  
2 - .316*01 
7 - .420*Ol 
? - . 3 q 5 + 3 1  
7 - . 2 u l * J 1  
2 - .199+01 
1 .UP0 
1 . 4 h l ' l O  
1 . 8 < 8 * O f l  
7 . 9 9 2 + 0 0  
1 .Y7U*OI !  
7 .945+Ol !  

j J l I  
a 

3 .[PC 
3 - . 1 2 3 * 0 1  
3 - . 1 9 6 + 0 1  
3 - .101+01 
3 -.17C*G1 
3 - . l < b * C l  
a .SCO 
8 . i 7 3 + n i  
8 . i q b * r i  
a . i q 7 + r i  
8 .17O+P1 
8 . l < b + C l  

x position 
. ~ ~ , n a  
.lLo3+uo 
.2L"+CO 
. 3 " O U * O O  
. 4COo*on  
. 5 L O O + O O  
.CCCG 
.1L00+[10 
. 2 * O O + U O  

b .312*OU 
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I I I I I I I I  I 1  

i 
1 
2 
3 

x position 
.tD!lLi 

v(2) 

. c o t  -. 118+[11 

. 1 2 Z + J 1  

.3?9*il 

. 5 @ 5 + L 1  

.50"+C1 . i-0 
- .17 3 + G  !' 

-.:94*r,c - . 3  1 7 U!. 

- . i ? R + C d  

- . :~a+cc 

The input is 

$1 
a 

2 .Lrb  
2 . 7 1 9 * : -  
7 . 1 ' 3 + 5 1  
7 . 2 - 2 + 3 1  
7 . 2 7 7 + 3 1  
7 .3 lU+rJ I  

7 - . h 1 7 +L :I 
7 - . 7 U b * 3 i :  
7 - . tE.2+L.n 
7 - . 9 6 2 + 0 r  
7 - . l r i + > l  

7 . L r c  

Problem 3 

Plane 

aP= o {use z,,, = -} 
aY 

q+ = 0 (wave envelope concept not used) 

M = 0 . 5  

CW = 0.071 - 0.151 (upper) 

= 1x10 (centerline) 30 
Cw 

P(0,Y) = 1 

n = 10 

m = 10 

j .(21 

5 .LCU 

5 . 2 5 8 + ' L  
5 .204+1': 
5 .317*0@ 
5 . 3 7 8 + r L  

1 0  . 1 1 8 * C 1  
10 - .1?2.01 
li -.3'9+:11 
I C  - . 5 - 5 + 2 1  
IC -.5=7*01 

5 . 1 7 3 + - r  

10 . e r g  



The calculated values are  

AX = 0.05 

Ay = 0.05556 

E, = 0.725 (X = 0. 5) 

AdB = -5.60602 

k % bk 'k dk ek 
- . ~ 2 c + r c  . l i b t o o  I -.92b*OO - . l l b+OG - . 1 L O * G 1  .GOO . 7 8 1 + 0 1  .PO0 - . i "o+o i  .uno . 179*P2  - .137*01  

2 .122.n2 - . 131*02  -.i@O+JI .a00 - .3U4+02 . I b l + " 2  .in" . L O C  
3 -.92b+OO -.11b+CO .COD .a00 
9 -.185*D1 - .233+C0  -.lCO*Ul - . 1 9 b * ~ . l  . Z a l r G l  . 1 6 4 t S Z  - . lCG+Ol  - . 19b+Gl  . "0C .a03 
5 . 202*02  - .193+C2 -.2LL*O1 - . 1 5 9 r ~ ?  -.339+CZ .7LIl+CZ .JIG .L10 .1c1 .no$ 
b - .105+01  - .233+00  .on0 .300 ."a30 .oon . 3 8 1 + 0 1  .16q+ i r2  - . 2 r ~ + o i  - . I F ~ ~ * G z  

. 7 8 1 + 0 1  - 3 1 6 - 7 9  -.iOU*Ol . L " O  - . 92b+C0  ml1h'OO 

i 
1 
2 
3 
'I 
5 
b 
7 
8 
V 

16 
1 1  

1 
2 
3 
4 
5 
b 
7 
0 
9 

1u  
1 1  

1 
2 
3 

5 
b 
7 

b 
7 
6 
9 
1L 
1 1  

x position 
.LbOO 
. 5 G 0 0 - ~ 1  . I L 0 0 + 0 0  
.1500*00 
.ZOOO.CO 
.25 ! lG+GO 
.3uoo+oo 
. 3 E @ O + O O  . 4L00+0O 
. 4 5 O O + O O  
. 5 U O U * C O  
. C i l C O  
.5Luo-u 1 
. 1 ~ [ 1 0 * L O  
.1500*CO 
.2LOO*UO 
. 2 5 n o * u o  
. 3 L 0 0 + 0 0  
.3500fL.O 
.4000.00 
.45C5.U@ 
. 5 C O O * L O  

x position 

1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
b 
6 
b 
b 
b 
b 
b 
t 
b 
b 
b 

1 
7 

2 
I 
7 

2 
2 
2 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

j 
2 .I"L.Ul 
I . 9 * 1 * 0 1  
7 .MC5+Jq 
7 .173*3')  
7 . 5*5+3 '1  
2 .iDbtJO 
I . ; 7 9 + > c  
7 . 774-01  
7 - . 4 = 1 - 2 1  
7 -.171+211 
7 - .1-9+013 

1 . 4 ? 7 + 5 C  

7 .119*30  
7 . 5 L l + J @  
1 .30C*30 
7 .10'I.a7 
i - . n ? l - ~ 7  
1 - . 2 ~ 1 . 3 C  
7 - . 3 ' 3 + 3 ?  
7 - . 5 7 3 + 3 c  

7 . i r a + a i  

7 . a u 3 + g n  

j 
3 
3 
3 
3 
? 
3 
3 
3 
3 
3 
3 
8 
8 
8 
e 
a 
63 

3 

8 
8 

e 

j 
4 
4 
4 
4 
U 
LI " 
4 
4 " 
9 
0 

9 

D 
9 
9 
9 

j 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

1 0  
I C  
1 0  
10 
10 
10 
1 0  
1 0  
10 
IC 
10 

lpl 
.1"0*01 
.941fCC 
. 8 4 3 + O t i  
.715* '10 
. 5 7 1 * o c  
. 4 3 9 . C L  
.3b0*GU 
. 3 R 4 9 + Q L  
. 4 O L * V !  
.5 CL. c L I  
.619+'IC 

. 9  P 5 .,?I3 

.1"*31 

. 1 1 0 f O l  

. l l b * 0 1  . 

.1'1+U1 

.174*01 

.1 '5+U1 

.124*G1 

. 1 ? L + 0 1  

. i * u + n i  

. i r o * ~ i  

49 

I .  



i 
1 
2 
3 
4 
5 
6 
7 
8 
V 

I t  
1 1  
1 
2 
3 
4 
5 
6 
7 
6 
9 

1 0  
11 

i 
1 
i 
3 
4 
5 
b 
7 
8 
9 

1 U  
1 1  

1 
2 
3 
4 
5 
b 
7 
8 
9 

10 
11 

i 
1 
2 
3 
4 
5 
b 
7 
c. 
9 
10 
1 1  

1 

3 
4 
5 
6 
7 

9 
10 
1 1  

a 

i 
1 
2 
3 
9 
5 
b 
7 
6 
9 

1 0  
11 
1 
2 
3 
4 
5 
6 
7 
8 
9 

l b  
1 1  

x position 
.000O 
.5 i00-01 
. l O O O + U O  
.1500+00 
.2000*00 
.2500*00 
.3000*00 
. 3 5 0 0 + 0 0  

x position 
.LjL.OO 
.5 ueo -u 1 . l t 0 0 + 0 0  

.2l,00+1)0 

. 3 i r @ O + L i O  

.3500+CO 

.40n0*00 

.5ri@C*bO 
.Gun0 
- 5 O O O  - 2 1  
. l L I O O + ~ O  

. 1 5 n o + o c  

. 2 5 r o t m  

. u 5 n o + o o  

x wsition 

. ? b O O + O C  

. 4 L @ U + C O  
. 4 5 O O * G C  
.:Loo+oo 
. i L l l i i  
.5L00-01 

.35no+oo 

x. wsition 
.ouno 
. S L O G  - 0 1  
.1000+00 
.1500+00 
. Z t O O + U O  
.25no+u0 

j 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

j 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
b 

j 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
b 
6 
6 
6 
6 
6 
b 
6 

j 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

. o m  

. Z Z l - O l  

. 3 v  1-0 1 

. 1 7 8 - 0  1 
- . 1 7 9 - 0 1  
- .770-01 
- .156*00 
-.25O*Gb 
- . 3 4 8 + C C  
- . 441+00  
- .515*00 

- .395-01 -. 9 09-0 1 
- .154*@0 
-.228+GG 
- . 3 C R + O C  
- . 3 e 9 + o o  
-.Ub6+CO 
- .535+00  
-.592+CO 
-.bUfl+OC 

.no0 

J1) 
. 2 5 7 + 0 1  
e 2 42+01 
.223'C1 

. 1 7 7 + c  I 

. 1 4 9 + 0 1  

. 1 1 9  * 0 1  

.6?1'G[r 

.420.0C -. b 1 7 - 0  1 
-.618+CC 

.489+G1 

. 4 F C + L 1  

. 2 9 5 + 0 1  

. 1 P 7 * G 1  

. 8 S 4 * L C  

.Y73-01 
- .506+0O 
- . 4 ? 0 + 0 0  
- . 1 7 5 + C 1  
- . 1 5 5 + 0 1  

. z ~ z + c ~  

. 5 4 e +oi 

-. 8 P 7 + G C  
- . 191+21  
- . Z P 5 + C 1  
- .356+G1 
- . u r o + c i  
- . 4 1 e + 0 1  
-.4'8*01 
- . 3 7 6 + 0 1  
- .375+C'1 
- . Z C Z + O l  -. 194  +O 1 
- . 1 9 6 t C l  
- .363+C1 
- . 4 0 3 + c 1  
- .576+Gl  
- . b l 2 + 3 1  
- .6"3+n1 
- . 5 C ' l * C 1  
-.493*C1 -. 4 1 u*o 1 
- . 3 2 9 + 0 1  
- .24l*U1 

J1) 
- . 1 5 9 - L 2  
- .239-02 -. 2 76-02 -. 2 6 4 - 0 2  

-.115-G2 
- .171-c3  

.662-G3 

. 1 7 O - V 2  

. 1 4 5 - 0 2  

. 149-02  

. 1 3 5 * 0 1  

. 2 5 4 ' 0 1  

. 3 4  3+c 1 

. 3 0 5 + 0 1  

. 3 @ 5 * 0 1  

. 3 3 7 + 0 1  
- 2  7 5  +O 1 
. 2 1 2 * 0 1  
. 1 5 7 * 0 1  
. 1 1 5 ' 0 1  

- . 2 r s - c ~  

. 4 n 7 + o i  

j 

2 
2 
2 
2 
2 
2 
2 
2 
7 
2 
7 
7 
7 
7 
7 
1 
7 
7 
7 
7 
7 

j 

2 
2 
2 

7 
2 
7 
7 
7 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

j 
2 
7 

7 
2 
2 
7 
7 

7 
7 
7 
7 
7 
7 
7 
1 
? 

7 
7 

j 
2 
7 
7 
7 
7 
7 
2 
7 
7 
2 
7 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

7 

. l l Y - O l  
- .256-01 -. 8 5 4 - 0  1 
- . lFS*UO 
-.220 r 0 0  
- .355+110 
- . 4 4 7 + J O  -. 5 ? 1  + O J  

- . b P 5 -0 1 
- .146*00 
-.23b*OO 
- . 3 7 9 + 3 1  
- .423*00 
- .5cs+t I !  
-.578+Cl] 
-.D78+00 
-.b59+OO 
- .bQ2*U'l  

.uro 

J1) 
. 1 6 7 * 0 1  
.25[i*01 
. i 7 ~ + 0 1  
. ~ ' r 5 + [ i i  
.178+Gl 
. 1 4 8 * 0 1  
. l l 6 * O l  
. 7 Q 2 + 0 3  
.377+30  

- . b C 4 + J l  
.7'1+01 
.b79*Ol  
. 4 0 2 . 3 1  
. 3 3 2 + 3 1  

- . i r 2 + 3 0  

.172+a1 

.3z7+no 
- . 772*00  
- .1?9*01  
- .174*31 
- . l a 9 * 0 1  -. 1 o7+D1 

i 
3 
3 
3 
3 
3 
3 
3 
3 
3 
8 

8 
8 
8 
8 

8 
8 
8 

a 

a 

e 

j 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

8 
8 
0 
8 

e 

e 

P 
8 
8 
e 

j 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

R 
P 
8 
8 

II 

6 
8 
8 

a 

e 

j 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
5 
8 
8 
e 

8 
8 
8 
8 
8 
8 

n 

. L10  

. 1 1 8 - C  1 
-.b"9-(17 
- .492-01 
- . 1 1 1 + c c  
-.1O1*0? 
- . 2 ' 2*c l  

. i z a - n i  

.(2) 
- . $ ' , e + C "  
-.:13+ni 
- . 512+01  
- .3q5*n1  
- .429*01  
- . u u 4 + 0 1  
- . 4 3 1 + ~ 1  
- . 3 ~ 5 + r i  
- . 3 U l * r l 1  
- . i 7 5 + c 1  
- . L " z + r i  
- .3hb+T1  
-.b70+Ol 
- . i l 8 * C 1  
-.;lU+?l -. 9 1 t *I! I 
- .&39'P1 
- . T I  3 * r i  
- . 5 7 2 * c 1  
- . 4 4 7 r c 1  
- . 3 4 9 + n i  
- . z i t  * r i  

. 7 9 5 * 0 n  

j 

4 

4 " 
4 " 
4 
4 
4 
4 
9 
G 
9 

1 

9 
9 
9 
9 

j 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
9 

9 
9 

9 
9 

9 

j 

(I 

4 " 
4 

" " 
4 

9 

1 

9 

9 

j 
4 
4 " 
4 
4 
4 
4 
4 

4 
9 

9 
9 
9 
9 
9 

p(2) 
.cno 
- 9 0 6 - t I  

- . 1 1 7 - i l  
- .414-:1 -. 297-J  1 
- . 155+ i j r  
- . 2 3 5 * r l r  
- . 3 7 3 r , r  
- . u 1 3 + . . ~  

- . 5 6 u *  i r  

- . l u Z . j P  
- . 2 ~ 9 r , r r  -. u u  u + j r  -. 6 n u t r  
- . 7 ~ 5 + ~ r  
- . e 7 s t d r  
-.%n+,* - .9 3 2 tiir 
- . 8 5 3 r ~ r  
- .7 3 5t ;" 

- . 496+9"  

.ncz 

J2) 
- .1 I 7 * 1 , l  
- . 2 4 u * u 1  
- . 3 u e r c 1  
- . 4 7 4 + " 1  
- . 4 6 7 r  J l  
- . 47*+ ;1  
-.461+;1 
- . ' I ? ~ . , ! l  

- . 299+L!  
- . 2 1 7 + ,  I 
- . ? I  b + L 1  
- . 9 7 i + J 1  -. 1 1 2 t i l :  
- . 1 ' z . : , ?  -. 1 1 P . d 7  

- a  3 0 7 + 3 1  
- . i R  1 +i ! 
- . 411*u1  
- . Z l b + d l  - .Z 7 7 *I: 1 

-. 36r .3 I 

- . i r 7 + ~ ' ?  

. i ? 9 + g r  

j 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

IC 
13 
i c  
13 
lG 
1 C  
1 5  
10 
1u  
1 C  
10 

J 

5 
5 

5 

5 

5 
5 

1G 
10  
li. 
1'1 
I t  
1 c3 
i u  
IL, 
I C  
1 C  
li 

j 
5 

5 
5 
5 
5 
5 
5 
5 
5 

I r. 
1; 
,!1 
i -  
I ,; 
10  
IC 
l b  
It 
1E 
IC 

j 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 

1 0  
1C 
1 'i 
10 
10 
10 

.Orti 
- . 1 t 4 - 0 1  
- .4"7-?1 
- . dQ7-31  
- . 1 9  8 .: L, -. 2 7C * C L I  
- . 3 r ~ + o ~  
- . 3 ' 3 + C :  
- . < h5 + 'I 
- . 5 3 k + r 1 i  -. 5 09  +!_I.  

- . I  4 z . r ~ :  
. L r l J  

-. 3 & 2 * L i  - .5 r 7 * I>L 

- . 7 7 > r  \ 

- . Y F Z + C ,  
- .116*fl l  -. 174"r 1 
- . I  71. * l a  1 

- . 7  7 1 +'i i; 
- . I r 2 +u 1 

. 7 f  :*,,1 

. 1 = < + 3 1  

. l ? L + - l  

.5 9 1 + i ' t  

.7?5-C1 
-.37r.'.,. -. 7 7 6  f r .. 
- . l?O.Cl  . 19 5.':? 

. 1 = u * 2 2  

.9'f ,t"l 

. u ~ c - r i  
- . i ~ o + r i  
-.5t5+n1 
- . 7  F ,, 1 r 1 
- . 7 ° 1 , + l ' 1  
- . b s 4 + " 1  
- . 4 7 5 * 1 1  -. 3 r 3+'11 

1C . 7 6 7 * C 1  
10 . 3 R l + O l  
10 . 9 P 5 + 0 C  
10 - .uu5+3c 
10 - . 9 F 1 + 3 U  
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i x position 
1 . 0 0 0 0  
2 .5000-u1 
3 * lrJOO*OO 
4 .1500+00 
5 .2000*00 
6 .2500+00 
7 .3U00+00 
8 .3SOO+OO 
9 . 4 C O O * 0 0  

1 0  .9500+00 
1 1  . 5uoo*oo  
1 .oooo 
2 .5000-01 
3 .1000+u0 
4 .1500*00 
5 .2000+00 
b .2500+00 
7 .3000+00 
8 . 3 5 0 0 + 0 0  
9 .4000+00 

10 .4 500.00 
11 . 5 0 0 0 * 0 0  

I J2) 
1, v2 a - -2 35 -G2 2 

-.2 18-02 2 
-.182-02 2 - .128-02 2 
-.b22-03 2 
.49b-04 2 
.b19-03 2 
.lOl-02 2 
-174-02 2 
-138-02 2 
.145-02 2 

.279*01 7 

.Zb5*01 7 

.245+01 7 

.220+01 7 

.189+01 7 

.155*01 7 

.120*01 7 

.901*0O 7 

.b89+OO 7 

.611+00 7 

.289+0i 7 

j 
J2) 

.369*00 3 

.355*00 3 
-34 2 +OO 3 
.329+00 3 
.313*00 3 
-292100 3 
.2bb+OO 3 
.236*00 3 

.190*OO 3 
-18 3+00 3 
.419+01 8 
. q m + o i  8 
.381*01 8 
.347+01 8 
.3@3+01 8 
.250+01 8 
.193+01 8 
.138+0 1 8 
.9 18 e00 8 
.597+00 8 
.977*00 8 

.2n8+00 3 

j 

.7bi+nn 4 

.(2) 

.790+011 4 

.731*00 9 

.b99+00 4 

.b58+00 4 

.bOb*OO 4 

. 5 4 2 * 0 0  4 

.973*00 4 

. 4 1 0 t n o  9 

.367+00 4 

.352+00 9 

.b07+01 9 

.587*01 9 

.548+01 9 

.489+01 9 

.411+0 1 9 

.321*01 9 

.227*01 9 

.141+01 9 

~270100 9 
.lnb+00 9 

.72o+on 9 

.(2) 
j 

.13n+oi 5 

.12b+01 5 

.120+01 5 

.114+01 5 

.10b*01 5 

.963+00 5 

. 8 4 5 * 0 0  5 

.719+00 5 

.6n5+on 5 

.526+00 5 

.498+00 5 

.882+01 10 

. 8 5 3 + 0 1  10 

.792*01 10 

.b92*U1 10 

.557*01 10 

.4 oo* 01 10 

. 2 4 3 + 0 1  10 

.108*01 10 
-978-01 10 

-.450*011 10 
-.b19+OC 10 

Problem 4 

Plane 
pressure 
wave 

- -&- 

$= o (use %=-I 

v = 0.6 

+ 77 =0.6 

M = 0 . 5  

rw = 0.071 - 0.151 (upper) 

rw = 1x10 30 (centerline) 

P(0,Y) = 1 

n = 10 

m = 10 

.(2) 

.197+01 

.190*01 

.la2101 

.111.01 

.156*01 

.139+01 

.118*01 

.9b9+00 
-779.00 
.646*00 
. 5 9 8 * 0 0  
.129*02 
.12b*02 
-11 b+02 
.996*01 
.759*0l 
.484+01 
-2 13*0 1 

-.b93-01 
-.142*01 
-.187*01 
-.i~2*n1 
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IIIII Ill I I 

The calculated values are 

k 
1 
2 
3 
4 
5 
b 

i 
1 
2 
3 
4 
5 
b 
7 

9 
1 0  
1 1  
1 
2 
3 
4 
5 
b 
7 
b 
9 

1 0  
I1 

i 
1 
2 
3 
4 
5 

7 
8 
9 

1J 
11 

1 
2 
3 
4 
5 
0 
7 

9 
1" 
1 1  

a 

ak 
- . 9 2 b t 0 0  -.233*GO 

. 1 3 2 + 5 2  - . 1 1 8 + 0 2  
-.PZb+OO - .233+00  
- . 1 8 5 + 0 1  -.4b5+GU 

.282+02  - .195+C2 
- .185*01 - .9b5+C0 

x position 

. 2 5 0 5 + 0 0  . 3COC+GO 

.350O+bO 

.4u'Jc+uo 

.4500*t i0  

.5LOO+bO 

. C L O U  

.5L03-01 

. l " O O + L O  

.2UOO+OO 

. 2 5 0 3 + G O  

. 3G00+00  

.3SCO*JO 

. 4 L O t i + O O  

. 4 5 c o + o o  

. 5 0 3 0 + 0 0  

. i s r o + ~ o  

x position 
.oooo 
.5C00-i l l  
. 1 0 l l O + C O  
.1500+Li@ 
. Z U O O + L O  

j 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

i 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
b 
6 
b 
b 
b 
b 
b 
b 
b 
b 
b 

AX = 0.5 

Ay = 0.05556 

Eo = 2.18 

E, = 0.853 (X = 0. 5) 

A ~ B  = -4.07234 

ck 
. 3 8 5 + 0 1  . " G O  

bk 
-.lSG+L1 .on0 
-.2CO+O1 .do0 - . 2 9 1 + 0 2  . 1 5 5 + " 7  

.no0 .UGO . 3 8 5 + 0 1  .304-79  
- . l C C + C l  - .796+U1 . 3 8 5 + 0 1  .1b4*"2 
- . Z O O + U I  - . i 5 9 + " 7  - . 3 i n + o z  . 7 7 9 + r 2  

. C O C  .Lon .38S+O1 . l b U + P 2  

IPI 
.1n0*01 
.Y42*0C 

.715*00  

.57Z+CG 

. 4 4 1 + b O  

. jbb*GC 

. 3 P 4 + 0 0  

.46b+CC 

. 5 C O + O 0  

. b 1 2 + 0 0  

.in0101 

. 9 3 2 + u 0  

. 8 7 e + 0 0  

.727+CO 

.blb*PO 

.531+CC 
. 5 n q * c o  
.547+OC 
.b38+GO 
. 7 4 3 + 0 0  
.83?+0C 

. e 9 3 + c c  

p(l) 

.1@0+01 

.934+CD 

. e ? @ + o c  

. b 9 0 + 0 0  

. 5 4 2 * 0 C  

. 4 7 1 + 0 0  

.3b5+CC 

.35Y+OC 

.393+GO 

.4b7*00  

.550+00 

. 1 5 0 * 0 1  

.930+5O 

. b ' l * G L i  

.7?0'OC 

.b l5*OL 

.579+CL! 

. 4 7 5 + b C  

. I ' P t C G  

. 4 ' l + C ?  

- 6  ? 2 + L [, 
.5 79 +or> 

j IpI 
2 . 1 r l C + O 1  
2 .541.00 
2 . 1 4 3 + 5 0  
2 . 714*00  
2 .572*00 
7 . 4 4 3 + o q  

2 .3P9+0O 
2 .473+00  
2 .5b7+LO 
2 .bUUU+3J 
7 .ICO+01 
7 . 972+on  
7 . 8 4 5 + 5 3  

I . 3 7 ~ + 0 n  

7 .7cO+O0 
7 .bb2+Oq 
7 .bL11+00 
7 .,R9+00 
7 . b 3 4 + 0 0  
7 . 7 7 1 + 0 ?  
7 . 8 ? 5 * G O  
7 . 9 7 4 + 0 5  

7 .l~O*tl 
2 .934+ST) 
2 .&7 i i+00  
2 . bQl+OC 
2 . 544+00  
2 . 4 7 3 + O C  
2 .3C2+00 
2 .357+G@ 
? . JCb+L3  
2 .47O+Oi! 

7 . 1 P 0 * 5 1  
7 . 5 1 0 * O C  
7 . a u 2 + 0 7  
7 .7U9+30 
7 . bCZfJq  
7 .592+50  
7 . 5 4 5 + 0 ?  
7 . 5 2 4 + 0 0  
7 .b33+CZ 

7 .bU3+CL;  

2 . 5 ~ 3 + o n  

7 . > 7 2 + c r  

j I P I  
I ,  

3 .lFO+Pl 

3 . 6 4 0 * I i f l  
3 .713+0r !  

3 . 9 s o + r n  

3 . 5 ~ 3 + ~ r  

ek 
-.92b+CO .233+00  -.190*01 .GOL 

.O"O .oco . IbO+O2 - .327*01 
-.2DG+OI .0OC -.92f.+CO . 2 3 3 + 0 0  

dk 

-.IOu+01 - . 7 9 b + b l  .cor .n00 
. u n ~  .OOL .Pa0 .a01 

- . z r ~ i + o i  -.i59+0~ .gun . 500  

j 
4 
9 
4 
4 
4 
4 
4 
4 
4 
4 
4 
9 
9 

9 

9 
9 

9 
9 

j 
9 
4 
4 
4 
4 " 
4 
9 
4 
4 
4 

9 
9 
9 
9 
9 

9 
9 
9 

j 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 
10 
10 
10 
1 C  
10 
10 
10 
10 
10 
10 

i 
5 
5 
5 
5 
5 
5 
9 
5 
5 
5 
5 

I U  
IC 
10 
1F 
10 
IC 
10 
10 
10 
lfl 
I J  
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i 
1 
2 
3 
4 
5 
0 
7 
8 
9 
10 
11 
1 
2 
3 
4 
5 
b 
7 
8 
9 

1 0  
11 

i 

1 
2 
3 
4 
S 
b 
7 
8 
9 

10 
11 

1 
2 
3 
4 
5 
6 
7 

9 
1" 
I 1  

n 

i 
1 
L 
3 
4 
5 
6 
7 
8 
9 

I 0  
11 
1 
2 
3 
4 
5 
b 
7 
8 
V 

l i )  
11 

i 
1 
2 
3 
4 
5 
b 
7 
b 
9 
10 
11 

1 
2 
3 
4 
5 
b 
7 
b 
9 
10 
11 

x position 
. C G O O  
. 5 L o O - u 1  
.1000.00 
.1SOO+OO 
. 2 L 0 0 + 0 0  
.2500+0O 
. 'DOO+OO 
. 3500*00  
.9000*00 
.4500.00 
.5iro0+00 

x position 
.bbbO 
. 5c00-01  
.1oco.uo 
.1500+00 
.2LOO+OO 
. 2 5 C C . " O  
.3UOO*OO 
. 3 5 0 3 * 0 0  
. 4 ~ 0 0 + 0 0  
. 4 5 0 0 + U O  
.SLPO.OC 
.OCOO 
. 5 0 0 0 - 0 1  
. l U r I O + C O  
. 15@0*00  
.2L00*00 
. 2 5 @ 0 * 0 0  
.3i100*uO 
. 3 5 0 0 * 0 0  
.4L00'00 
.4500.00 
.5b00.1j0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
b 
6 
b 
b 
6 
b 
6 
6 
6 

j 
1 
1 
1 
1 
I 
1 
1 
1 
1 
1 
1 
b 
6 
b 
6 
b 
6 
6 
b 
b 
6 
6 

1 
I 
1 
1 
1 
I 
I 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
6 
6 
b 
b 
6 
6 

I 
1 
1 
1 
I 
I 
1 
1 
1 
1 
1 
1 
b 
b 
6 
b 
b 
b 
b 
6 
6 
b 
b 

. O C O  

.120*00 

. 1 9 9 + 0 0  

.22 l+LO 

. 1 R 4 * 0 @  
~ 9 6 0 - 0 1  -. 2 2 8 - 0 1  

-.147+UG 
-.25l*OG 

-. 3 12*00  
.no0 
. 7 2 5 - 0 1  
.1 m * o o  
- 9  83-0 1 
- 4 4  3-01 

- . 486-01  
- . 1b8+00  
-.299*GO 

-.Sllt@C 
- .553+C6 

- .310400 

- .42n+oo  

.2 h 3 + 0 1  

. 2 8 1 + 0 1  

.312.01 

.34b+U1 
. 3 7 6 + 0 1  
.3"3*@1 
. 3 9 1 + 0 1  
. 3 b 7 + 0 1  
. 3 2 9 * 0 1  
. 2 6 8 * 0 1  
.ZF7*01 
.5n7.c1 
. 5 2 0 + 0 1  
. 5 2 8 + U I  
. 5 2 8 * 0 1  
.517.01 
.404.0 1 
.4 59 + D 1  
.4 14.01 
. 3 6 1 + 0 1  
.3" l+C1  
.235.01 

J2) 

- . b P l + L 2  
- . 1 3 5 + i l  
- . 1 4 5 . [ i l  
- . 5  1 3 + 0 1  
- .218*U1 -. 2 0 3 r 0  1 
- e  1 7 6 r U  1 
- . 1 4 4 + 0 1  
-.118+01 

- . 1 1 7 + 0 1  

-. 19010  1 -. 2 b5*0 1 -. 31 7.0 1 
- . 3 4 5 + 0 1  
- . 348*01  
- . 3 ? 0 * 0 1  
- . 2 o a + o i  
-.26l.U1 
- .227+01  
- .2P8+01  

- . 1 " 7 * ~ 1  

- . 9 7 8 + c r  

-.3113-03 -. 803-c  3 -. 1 4  5-02 
- .190-02  
-.21b-O2 
- .217-02 
-.1R7-U2 
-.129-G2 
- .572-03 

-979-04  
- 3 1 4 - 0 3  
. 2 9 0 + @ 0  
. l O l * O l  
. l b 7 + 0 1  
. 2 P I . O 1  
. 2 5 8 * U 1  
. 7 7 9 + 0  I 

j 
2 
2 
2 
2 
2 
7 
2 
2 
2 
2 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

j 
7 
2 
7 
2 
2 
2 

2 
2 
7 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
1 

j 
7 
2 
2 
2 
2 
2 
2 
2 
2 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

j 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

.on0 

.ll6*00 

. 1 0 5 + C O  

. 2 l b + r l l  

. 1 7 8 * O C  

.b99-C1 -. 29  1-0 1 
- .154+00 
- . 2 5 8 * 0 0  
-.318*00 
-.371.30 

.on0 

.5F2-01 

.bbb-Ol . 4s 5 -c 1 -. 134  -0 1 
- . IOb*00 
- .225*00  
- .357*30  
-.4qb*CO 
- .595+00  
- .663+00  

J1) 

. L ? l * D l  

.ZR9+0l  
.3  1 9 r c 1  
.353+01  
. 3 P l * 0 1  
. 3 ~ 7 * 0 1  
.3Q4*GI 

.32b*01  

.269*81 

. 2 ? 9 * 0 1  

. b E 4 " 2 1  

.66Z*Zl 
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TABLE I. - COEFFICIENTS IN DIFFERENCE EQUATION (EQ. (54)) 

Cell Matrix element 
index, 

k ak bk ‘k dk ek 

6 a5 0 

-2  A 
Ax 

2 al + w2 9 - 2w3 A- 
(Ad2 

- 4K1L2N2* 
(Ad2 

c5 b5 0 

c1 - 2W1 Ay + 4W3 
( W 2  

e2 -2 c2 0 a2 3 

4 c1 -- +-- -1 -- 2K1L2 0 
K3 Ay2 4K1L2 2K1Ll(Ay)2 -1 -- 2KlL2 

Ax Ax Ax Ax Ax 

5 a4 i i. 2N2 9 2b4 C4 - 2N1 Ay - 2N2 4 - 4K L N 4 0 
Ax Ax ‘Ax 

I 
0 



TABLE II. - SUMMARY OF OPTIMIZATION 

RESULTS (REF. 9) 

Dimensionless Specific 
frequency, acoustic 

77 impedance, 
r 

0 . 5  0.31 - 0.1 i 
1.0 . 6 5 -  . 5 i  
1.535 .85  - 1.0 i 
2.0 .90 - 1.4 i 
5.0 .85 - 2.45 i 
10.0 1.40 - 3.6 i 

Sound 
attenuation, 

A dB, 
dB 

70.6 
39. 2 
22.6 
14. 3 
4.0 
2.30 

AT- I 

0 .5 1.0 1.5 20 25 3.0 
Dimensionless axial coordinate. x 

Figure 1. -Typical pressure profile for sound propagation in 
two-dimensional, soft-wall duct. Dimensionless frequency, 
7, 1; dimensionless duct length, L"/H", 3. 

Hard wall 

- - 3  

7 +  I7 -7+1 

Plane 
pressure 
wave -._ .. 

i 
1 
! 

Dimensionless axial coordinate, x 

Figure 2. - Sensitivity of real pressure component p( l )  to choice of wave enve- 
lope of frequency 7)' for two-dimensional har_d-bvall duct. Dimensionless 
frequency, 7, 1; dimensionless duct length, L-IH' = 3. 
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m 

m' 
-n 

V a 

Symbols denote analytical solution of Rice (unpublished) 
Lines denote numerical calculation with n E 10 and m = 10 

Dimensionless 
frequency, 

40 

?- fly 
5 

2 
E .- 
x 

I -u 
0 1 2 3 4 5 6 7 

Dimensionless duct length, L*/HE 

Figure 3. - Effect of axial duct length and dimensionless frequency 
o n  attenuation at optimum impedance in two-dimensional, sofl- 
wall duct assuming that wave envelwe frequency 77" equals 7. 
(From ref. 4. 1 

_I . ~ _ _  L*/ H* 

. . . .  
(n, 1) 

L Initial-condition 
gr id  points 

Figure 4. - Coordinate and grid-point representation of two-dimensional, sofl-wall duct. 
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l l l l l  I 

I 
I 
I 
I 

e e a e 
Plane 1,3 2.3 3,3 4.3 5.3 lrspecif ic 
pressure 1 acoustic 
wave 1 
P = 1-.. 

I impedance I at exit, 
I G - 1  -. 

1 l f2 ;2 :2 4.7 5. 21 

I Init ial- 
condition 

I 

1 1  2. 1 3. 1 
grid points+ 

Figure 5. - Illustrative example of soft-wall duct with total number of grid rows m of 4and total number of 
gr id  columns n of 5. 

CL E (a) Conventional pressure solution. 

E .,, f ,p(l) ,,-irPx 
- 
m 

Dimensionless axial coordinate, x 

(b) Wave envelope solution 

Figure 6. -Typical pressure profiles for sound propagation in two- 
dimensional, soft-wall duct for dimensionless frequency r l  of 1. 
dimensionless duct length L*/ H" of 3, and Mach number M 
of 0.5. 
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Momentum equation, 
eq. (12) of ref. 3 

Boundary condition, 
eq. (34) of ref. 3 

----- 
Momentum equation, 

Boundary condition, 
eq. (74) of th is report 

eq. (28) of th is report 
----- 

Axial position along upper wall, x*/H* 

(a) Exit condition of reference 3. Sound attenuation, 
AdB, 6.1 decibels. 

Figure 7. - Comparison of dimensionless transverse acoustic particle velocity v at wall as calculated from momen- 
tum equation and impedance condition. Dimensionless frequency, 71, 0.6; dimensionless duct length, L'/H*. 
0.5; Mach number, M, 0.5; specific acoustic impedance, C, 0.071 - i 0.151. 

Dimensionless 

(b) Exit condition of th is report. Sound attenuation, 
AdB, 3.4 decibels. 

m 
V 

40 
U 

0 v) 

E .- 
x 

i 4  

21 
0 

duct length, 
L ~ H '  
3.43 
6.86 

Symbols denote analytic 
solution (table Xll of ref. 9) 

Lines denote numerical cal- 
culations for which m = 20, 
n = 30, and q b =  1 

------ 

\ -L*/ H* = 3.43 1 

Dimensionless frequency. 71 

Figure 8. - Effect of dimensionless frequency on attenuation at 
optimum impedance in two-dimensional soft-wall duct. Dim- 
ensionless duct length, L*/H*, 3.43; Mach number, M, 0.3. 
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